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Abstract Tile t l m r y  of AC magnetoresistance in inhomogeneous solids U developed us- 
ing lhe effective-medium theory. Calculalions are performed for systems which mnsist of 
random high- and low-conductivily regions. 'IXe weak magnetic field H is directed along 
the z axis The effective mnductivily dianges Ao;= and A o g  and the magnetoresis. 
lances A&; and A p Z  m Lalh the low- and lhe high-frequency regions are calculaled 
up U) the HZ approximalion. The Calculations show that, owing ta inhomogeneilies, 
plateaux of the finite values AV: and ApF in the low-freqoency region oocur. I t  is 
possible to have b t h  ApkZ > A&: and < Api' m .  h the high-frequency limit 
the equalities AV: = A p g  = 0 hold as in homogeneous solids 

1. Introduction 

Theoretical investigations of the AC kinetic phenomena in inhomogeneous solids have 
been reported in many papers. Calculations of the AC conductivity have been per- 
formed, for example, by Springett (1973), Webman ef ai (1977b) and Sinkkonen 
(1981). They have shown that the effective conductivity has strong dispersion at the 
frequency wo - rkl and has low- and high-frequency plateaux. Here T~~ is the 
Maxwell relaxation time. In the studies by Fishchuk (1983, 1986) a similar result was 
obtained for the AC effective Hall conductivity and the effective Hall mobility. These 
results were used by Jaouen ef a/ (19%) to interpret the experimental data on the 
Hall mobility in silicon with arsenic ion implantation. 

The AC magnetoresistance in semiconductors with random dielectric inclusions 
and in highly inhomogeneous semiconductors was investigated by Elshchuk (1987, 
1989). In the low-frequency region the longitudinal magnetoresistance appears as a 
result of inclusions. This kind of magnetoresistance is absent in the high-frequency 
region and in homogeneous solids. In the present paper we develop the general theory 
of AC magnetoresistance in inhomogeneous solids in the presence of a weak magnetic 
field. Calculations are performed for semiconductors with random low-conductivity 
inclusions. As in the cited papers we use the effective-medium theory (EMT). The 
validity of the EMT results was corroborated by comparison with numerical simulation 
data in the presence of both magnetic (Webman et a1 1977a) and alternating electrical 
(Webman et a1 1977b) fields. 

2. Theory 

We consider a semiconductor with random macroscopic fluctuations of the electro- 
static potential. The average fluctuation space size is much larger than the electron 
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mean free path. In this case the local values of kinetic coefficients may be introduced 
at the p i n t  r. We suppose that the applied external magnetic field H iS directed 
along the z axis. Let us apply the external electrical field E(t) = E,exp( iw t )  of fre- 
quency U. Then at the point r we have the electrical field E ( r , t )  = E,(r)exp(iwt) ,  
where (E,(r)) = E,. The angular brackets denote the space averaging. We investi- 
gate the frequency region, where w < T - ~ .  Here T is the electron mean free time. 
When the displacement current is taken into account, the complex conductivity tensor 
P ( r )  has the form &*(r) = U(.) + iwd0/4x. Here we suppose that the dielectric 
permeability 2, is constant over the whole volume of the system. We introduce the 
effective conductivity tensor U; by 

( J ( r ) )  = ( & ‘ ( v )  x E ( r ) )  = &: x ( E , ( T ) )  = &: x E ,  (1) 

where J ( r )  is the bcal current density. The value &A has the form &: = &,,, + 
iw im/4n ,  wherc i, is the effective dielectric permeabiIity of the system. Further 
we wi te  e;, = U,,, + i w e 0 i / 4 n .  Here &m is the complex value and 2, = c o l  + 
4nIm(&.,,/w). However, in the low- and high-frequency limits considered, we have 
Im U,,, < Re +.,,, Le.  U,,) IT Re&z,,. Let us writc &*(r)  as .~ 

u * ( r )  = + A&(T) A&(r )  = +(Y) - cm. (2) 

Inserting (2) into (1) we obtain 

( J ( T ) )  = &; x E ,  t ( A & ( r )  x E , ( T ) ) .  (3) 

We see that it i$ necessary to calculate the value A&(?-) x E o ( r ) ,  Then from the 
condition (AU(r)  x E , ( r ) )  = 0 we can find um and consequently the value 5;. 

Stroud (1975) obtained the equations required to calculate the DC effective con- 
ductivity tensor in inhomogeneous systems in the presence of a magnetic field using 
the EMT. We extend the theory of Stroud to calculate the AC conductivity tensor &,”. 
We obtain the following equation: 

(( i - air. r)-LA&) = 0 .  (4) 

From here we find 
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3. Magnetoresistance at weak magnetic fields 

The components of the tensor &(?) in inhomogeneous systems have the same form 
as in homogeneous systems. Consequently for weak magnetic fields we can write 

U== = U - Auk, uyy  = us* = U (11) 

UYZ = ua,,(l.lH/c) A d ,  = u 4 1 . 1 H / c ) 2  (12) 

a21 = ( T 2 ) / ( + .  (13) 
(4 

a l l  = - 
( 4 3  

P = ( e / m ) ( T )  

The angular brackets in (13) denote the energy averaging. 
As componenrs of effective tensor em we choose 

U;, = U: - A u r  ugy = U;= $2 = U: - AqZ (14) 

U: = u ~ ~ I z ~ ~ ( P H / c )  A u F  = n I l u , r ( ~ H / ~ ) Z  AUZ = u 3 3 u l l ( / l H / C ) Z .  

(15) 

The values u l l ,  u2, and U:, depend on the degree of inhomogeneity and 
must be calculated. For this purpose we insert (11)-(15) into (5)-(7) and expand the 
results in powers of H up to the quadratic averaged term. Every term of the series 
must be equated to zero. We obtain the following system of equations: 

(U11 - u $ ) ( A )  + ((2011 + U ) ( U  - .:)A?) 

+ ; [ ( U , ,  - ~ 7 ~ ~ ) / B ] ( ( ‘ 5  - u:,)’A2) t 31CB((u - U ~ , ) ~ A ~ )  = 0 (16) 

(17) 0 2  a 
~ 3 3  = u I 1  { 2 ( ( ~  - om) A ) / [ 1 5 B 2 ( A 2 )  - 3 ( ( ~  - u: )A2) }  

( ( U  - u21)A2) = 0 ( ( U  -.:)A) = 0 (18) 

where 

A = l / [ u  + 2u: + i3w(c0/4?r)] B = CT: + iw(eO/47r) K = u ~ , / u , , .  

(19) 

For further calculations we must choose the distribution [unction of the value U .  We 
study a semiconductor with random low-conductivity inclusions. We suppose that p 
and 1 - p are the parts of the system volume with the conductivities uo and U ] ,  

respectively ( u l / u o  X ,  < 1). 

4. Frequency dependence of the magnetoresistance 

We consider both low-frequency regions, where w < 4 ~ 1 ~ ; ~  I/to, and high-frequency 
regions, where 7-l > w > 47rluF//e,,. 
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Let us examine the low-frequency region. In the limiting case we can take w = 0 .  
In this case we perform averaging in (16)-(18) and obtain 

o ~ I / u :  = (Dl - K D Z ) / ( D l  + 0 3 )  

03,/a: = (ull/u:)g[(l - X:)’ao + (X, - X:)2a1l 

U,,/.: = (a0 + % X , ) / ( a o  + . I , X  

u ; / a , = a + ( a  + s ,  y 1 P2 

(20) 

x {[4(X:)z- 1 +2X:]ao+[4(X,) .o 2 -X:+2x,X:]al}-1 (21) 

(22) 

(U) 
where 

D, = p / ( l  + 2 X y + ( 1 - p ) / ( X 1  t2X:)’ (24) 

D , = p ( l  -X$)2/(1+2S:)3+(1 - p ) ( X l - x ’ ~ 1 ) 2 / ( X , + 2 S ~ , ) 3  (25) 

ao=p(Xl+2X:)2 a l = ( l  - p ) ( 1 + 2 X i ) 2  (27) 

a = f [ f ( 3 p -  1)(1- X,)  + $XI] (28) 

x: = .:/U, xi1 = uz1/a0. (29) 

If p + 1 ,  we have ulI/cr; - u,,/u:, + .:,/Uo -+ I ,  u3Ja; 3 0. If p 3 0, we 
obtain o l l / a ~  -+ a,,/u; -3 1 ,  u3Ju:, - 0, u;/ao + .,/Uo. 

Let us consider the case of dielectric inclusions (ul + 0). Then from (20)-(23) 
for I 2 p > p ,  ( p ,  is the percolation threshold) one easily obtains 

allla: = V I  + Iiv, . 3 J 4  = (crIl/a:);(1 - P I / ( + -  1 )  (30) 

a,,/.: =2(3p-  1)/(3p+ 1 )  .:/ao = ( 3 p - l ) / 2 .  (31) 

Here 

‘pl =4(Gp- 1)/(21p- 1) pz = - 7 2 p ( 6 p -  l ) ( l - p ) / ( 3 p +  1)’(21p- I ) .  

(32) 

If p + p c  we have crll/cr!) -+a3Ju;, -+ %(I  - K)/3, a,,/& +cr:l/uD-+O. 
In figure 1 the functions o!, /uo, [ ( ~ ~ I / c ) a , , ] - ~ u ~ / a ~ ,  = ozl/o:, 

AU?/LLY;~ = u33/u11 versus p obtained from (21)-(23) are shown. The bro- 
ken curves here and below are derived for the case a, =O. 

In figures 2 and 3 the functions [ ( ~ N / c ) ’ u l l ] - ’ ~ u ~ ~ / c r ~ ,  = ull/u; and 
[ ( g H / ~ ) ~ a , ~ ] - ~ A a ~ / u :  = u ~ ~ / u :  versus p obtained from (20) and (21) for 
different IC-values are shown. 

Now we consider the transverse and longitudinal magnetoresistances Apga = 
pga - pg using the expressions 

A p r / p g  = A u $ z / u ~ - ( u ~ / a : ) 2  Apif/pg = A a ~ ~ : : / o :  pk = l/&. 

(33) 



AC magnetoresislance in inhomogeneous solids 8049 

P P 

Figure l. Dependences of ukfuo (curve I), Figure 2 Dependences of Awgz/& on p for 
& / w k  (curve 2) and A u g / A u L z  (cuwe 3) u1/uo = 0.01 at various IC: curve I, K = 1.0; 
on p for ui /oo = 0.01. ?he lxoken curves here cnrve 2, K = 0.8; curve 3, K = 0.5; curve 4, 
and below mrrespond to the case when 01 = 0. X = 0.2.  

0 0 2  0 4  0.6 O B  1 0  
P 

1 . 0  . . . , .  . . 
I 

P 

Figure 3. Dependences of Au:=/uk and Flpre 4 Dependence of Apgz/pO, on p for 
A p ; = / p k  on p for ul/uo = 0.01 at w i o u s  SI 1.0 = 0.01 at various IC: cuwe 1, I< = 1.0; 
K. curve 1, K = 1.0; curve 2, K = 0.8; curve curve 2, IC = 0.8; curve 3, K = 0.5; curve 4, 
3, K = 0.5; curve 4, K = 0.2.  K = 0 . 2 .  

In our case the values A U ; ~  and A&* are positive. Inserting (15) into (33) we 
obtain 
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+ 18p( l -  ~ ) ( 6 ~ - ~ 1 ) 1 / ( 6 ~ -  1 ) ( 3 ~  t l)Z}aii(+H/c)z (35) 

APE/& = [6(1- ~ ) / ( 2 1 ~ -  111 (1 - IC[18~(1 - P ) / ( ~ P +  1)'1} a i i ( ~ H l c ) ~ .  

(36) 

If IC = 1 (dispersion of 7 is absent), equations (35) and (36) become 

&C,=/P; = [ 3 6 ~ ( 1  - P ) ( ~ P -  1 ) / ( 2 1 ~ -  1)(3p t 1)21(+H/~)z 

APZ=/P; =[6(1 -P)(3P- 1)(9?-'- 1 ) / ( 2 1 ~  - 1)(3p+ ~ ) ' I ( P H / c ) ~ .  

(37) 

(38) 

In the limiting case q = 1 - p << 1 we have 

A P F / P ~  = & q b H / c ) 2  APE/& = &dc1H/c)2. (39) 

The last results coincide with the formulae in the paper by Pohoryles and Figielski 

In figure 4 the functions [ ( ~ H / ~ ) ~ u ~ ~ ] - ' A p ~ ~ / p ~  versus p obtained from (34) 
using (20) and (22) for different ZC-values are shown. As we can conclude from 
(33) the functions [ ( + H / ~ ) ~ a ~ ~ ] - ~ A p ~ / l p ~  versus p coincide with the functions 
[ ( ~ H / C ) ~ ~ , ~ ] - ' A U ; K " / U ~  versus p i n  figure 3. 

We see from figures 1-4 that there are distinctions between the full and broken 
curves in the vicinity of pc as in the case of the DC conductivity (Kirkpatrick 1973). 

Let us study the correlation of transveme and longitudinal magnetoresistances. 
For this purpose we use the equality A&,= = ApE. %king into account (35) and 
(36) we find that 

(1975). 

I C =  $(3p+1)'/[(3p- 1 ) ( 2 1 p - l ) t 4 5 p ( l - p ) ] .  (40) 

In figure 5 the dependence of K versus p at pc  < p < 1 is shown. 

I 

pc 0 . L  0 6 0.8 1.0 

P P 

Figure 5 Dependence of K on 1' for b, = 0 and 
the oondition ApZ = A&* (APE > ApL* in 

Figure 6. Dependences of Ap&zIp!,, ( C U N e  1) 
and Apgfp0, ( cum 2) on p for a1 = 0 and 
IC= 1.0. area l, and A&= < Apgz in area 2). 
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It is easy to see from (35) and (36) that in regions 1 and 2 the inequalities 
A P ~  > ApZZ and Apg < A&=,., respectively, occur. In figure 6 the functions 
[ ( ~ H / ~ ) ~ a ~ ~ ] - ~ A p ~ ~ / l p ~  and [ ( p H / ~ ) ~ a , , ] - ~ A p g / l p ~  versus p obtained from 
(37) and (33) for I< = 1 are shown. These curves coincide with the broken curves 
1’ in figures 3 and 4. For the values p > p ,  we have the ratio A p r / A p Z x  = 
(9p- 1 ) l S p  < 1. 

Next we consider the high-frequency region. In this region, only the first term in 
equation (16) has a finite value. Consequently we have uI1 = U:. From (17) we 
obtain us = 0. From (18 )  we find that U: = ( U ) .  Then we write 

(41) 
[ l / t C L ~ / c ) 2 a , l l ( ~ ~ ~ = / ~ ~ )  = 11/(~H/c,a2,1c..~x/u~) = 1 

[ l / ( L ~ l c ) Z ~ t i l ( A ~ ~ / ~ ~ )  = 0 

where 

a : / u , = P + ( l  - P ) u 1 / u a .  (42) 

A p Z x / p i  = ( I  - K ) U ~ , ( ~ L H / C ) ~  A p : , l / p i  = 0. (43) 

w < WI = (47r/€,)C+ (44) 

For the magnetoresistance we find that 

Now the conditions for the low- and high-frequency regions can be rewritten as 

w > Wh = (47r/€&2) 

where U:) and u2)  are the effective values of the low- and high-frequency con- 
ductivities, respectively. In the frequency band wI < w < w,, the transition from 
the low- to high-frequency regions occurs. The length of the intermediate-frequency 
band depends on p. For example, if U, = 0, we have w,, - wI = 27ruo( 1 - p ) / e , .  
If p -+ 1, the intermediate-frequency band disappears naturally. If p p, ,  the 
intermediate-frequency band length has the maximum value wI, - w, = 4?ru,/3~,. 

5. Discussion and conclusions 

The theory of the AC magnetoresistance in random inhomogeneous solids using the 
EMT is developed. We consider the case of weak magnetic fields. The frequency de- 
pendences of the changes in conductivity due to H and the magnetoresistance in both 
the transverse and the longitudinal directions to H are investigated. Calculations are 
performed for semiconductors with random low-conductivity inclusions. We inves- 
tigate the changes in conductivity and magnetoresistance in both the low-frequency 
(w < wl) and high-frequency (T-’ > w > U,,) limits. As can be easily seen, the 
low- and high-frequency asymptotic values obtained change very weakly in the large 
frequency limits, i.e. we have low- and high-frequency plateaux. In the frequency 
band w1 < w < wh there b strong dispersion and the transition from the low- to 
high-frequency plateau occurs. 

The calculations show that in the low-frequency limit the curve of uL=/u: versus 
p (figure 1) has a minimum and the ratio Aur/AuZx < 1 has a maximum at the 
percolation threshold p,. The ratio A U Z / A U ; ~  depends on p but does not depend 
on K. Ab: and A u F  depend on both p and K (figures 2 and 3). 
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The curves of Ap:=/p; versus p strongly depend on IC (figure 4). As follows 
from (33) the curves of Ap:/p: versus p coincide with the curves of Au:/cT; 
(figure 3). The ratio A p E / A p F  depends on both p and I<. In areas 1 and 2 in 
figure 5 we have A p z  > A&* and ApE < A&=., respectively. If K = 1 as 
follows from figure 6 and (37) and (38) for 1 > p > p,, we have A p E  > A p r .  

Let us discuss the frequency behaviour of the conductivity changes and magne- 
toresistance. The finite values of A u r / u :  and A&,=/& in the low-frequency 
limit go to finite values in the high-frequency Limit with increasing w. If I< = 1 
we have that Ap", /p ;  + 0 in the low-frequency limit, and A p z / p i  = 0 in the 
high-frequency limit. 

The finite values of Aug/uk and A&:/& in the low-frequency limit decrease 
to zero when we go &om the low- to the high-frequency limit. In homogeneous 
systems ( p  = 1 or p = 0) the values of AuE/u: and A p r / p ;  do not depend on 
the frequency, and the values of Aukz/u: and A p E / p i  are equal to zero for all 
frequencies. 

The length of the transition band from the low- to the high-frequency region 
depends on p. At the percolation threshold p ,  the length has the maximum value. 

In conclusion we discuss the conditions of experimental observation ol our re- 
sults. We must point out that curves in all figures are calculated under the condition 
of fixed values of oo and ul. This condition can occur, for example, in prepared 
two-component solid mixtures with various p .  If we create a low-conductivity region 
by irradiation or ion implantation in a semiconductor, the values oo, u1 and ul /uo  
can be changed because of the creation of p i n t  defects in the system. However, 
to obtain the experimental frequency dependences of magnetoresistance there are 
no significant problems. Jaouen el a/ (19S6) and ChristofidCs et af (1989) obtained 
low- and high-frequency plateaux in the Hall mobility for silicon with ion implanta- 
tion. We can expect to obtain similar frequency plateaux in the magnetoresistance in 
inhomogeneous solids. 
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