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Abstract. The theory of AC magnetoresisiance in inhomogeneous solids is developed us-
ing the effective-medium theory, Calculations are performed for systems which consist of
random high- and low-conductivily regions. The weak magnetic field H is directed along
the z axis. The effective conductivity changes A oS’ and Agi® and the magnetoresis-
tances A pZT and Api’ in both the low- and the high-frequency regions are calculated
up 1o the H? approximation. The caiculations show that, owing to inhomogeneities,

plateaux of the finite values AoZZ and ApZF in the low-frequency region occur. It is
possible to have both ApZ¥ > Apss and Apf® < ApiZ. In the high-frequency limit

the equalities Ao = Api = 0 hold as in homogeneous solids.

1. Introduction

Theoretical tnvestigations of the acC kinetic phenomena in inhomogeneous solids have
been reported in many papers. Calculations of the AC conductivity have been per-
formed, for example, by Springett (1973), Webman er a! (1977b) and Sinkkonen
(1981). They have shown that the effective conductivity has strong dispersion at the
frequency wy ~ 7 and has low- and high-frequency plateaux. Here m is the
Maxwell relaxation time. In the studies by Fishchuk (1983, 1986) a similar result was
obtained for the AC effective Hall conductivity and the effective Hall mobility. These
results were used by Jaouen e a/ (1986) to interpret the experimental data on the
Hall mobility in silicon with arsenic ion implantation.

The AC magnetoresistance in semiconductors with random dielectric inclusions
and in highly inhomogeneous semiconductors was investigated by Fishchuk (1987,
1989). In the low-frequency region the longitudinal magnetoresistance appears as a
result of inclusions. This kind of magnetoresistance is absent in the high-frequency
region and in homogeneous solids. In the present paper we develop the general theory
of AC magnetoresistance in inhomogeneous solids in the presence of a weak magnetic
field. Calculations are performed for semiconductors with random low-conductivity
inclusions. As in the cited papers we use the effective-medium theory (EMT). The
validity of the EMT results was corroborated by comparison with numerical simulation
data in the presence of both magnetic (Webman ef a/ 1977a) and alternating electrical
(Webman et al 1977b) fields.

2. Theory

We consider a semiconductor with random macroscopic fluctuations of the electro-
static potential. The average fluctuation space size is much larger than the electron
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mean free path. In this case the local values of kinetic coefficients may be introduced
at the point ». We suppose that the applied external magnetic field H is directed
along the =z axis. Let us apply the external electrical field E(t) = Ejexp(iwt) of fre-
quency w. Then at the point » we have the electrical field E{(r,t) = Ey(») exp(iwt),
where {E,(r)} = E,. The angular brackets denote the space averaging. We investi-
gate the frequency region, where w < v~!. Here r is the electron mean [ree time.
When the displacement current is taken into account, the complex conductivity tensor
&*(r) has the form &*(r) = &(r) + iwé, /4w=. Here we suppose that the dielectric
permeability €, is constant over the whole volume of the system. We introduce the
effective conductivity tensor &, by

(J(r)) = {67(r) x E(r)) = &7, x (Bo(r)) = o7, x By 1)

where J(r} is the Jocal current density. The value &), has the form &}, = &, +
iwé, /4w, where &, is the effective dielectric permeability of the systern. Further
we write &% = &, 4 iwe,f/4n. Here &, is the complex value and €, = ¢,/ +
47w Im(é,, /w). However, in the low- and high-frequency limits considered, we have
Imé&,, < Red,,, ie. &, =~ Reé,,. Let us write ¢*(r) as

o (r) =6 + Aa(r} AF(r)=d(r)~-a,. 2)
Inserting (2) into (1) we obtain
{(J(r)) = &}, x Bq + {Ac(r) x Ey(r)). 3)

We see that it is necessary to calculate the value Aé(r) x Ey(r). Then from the
condition (A& {r} x Ey(r)) = 0 we can find &, and consequently the value &;,.

Stroud (1975) obtained the equations required to calculate the DC effective con-
ductivity tensor in inhomogeneous systems in the presence of a magnetic field using
the EMT. We extend the theory of Stroud to calculate the acC conductivity tensor &,,.
We obtain the following equation:

{I-a& DYy 'as) =o0. ' (@)
From here we find

([(1 - Aazxrxa')Aazz - Fx:z:(Aa‘y::)Z]/[(l - Aa:xrzs)z + Fiz(‘ﬁay:)z]) =0

()
(Ao, /(1 —Ac,, T, =0 ~ ©
(Ao, /Il — Ac,, T, )"+ T8 (A, ) ) =0 (7

Po =Dy = 3{1/do +i(w/4m)el} {1-[01 - 9~ 26in ' (VOI/VE)

Per = {1/elagy + iw/4m)el} {1 - [(1- /2 sin ™ (VA /) ©
<= (o —ox)/loi +ilw/am)el. a0

"

As we see, the frequency w is only in I
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3. Magnetoresistance at weak magnetic fields

The components of the tensor &(r) in inhomogeneous systems have the same form
as in homogeneous systems. Consequently for weak magnetic fields we can write

Tpgg =0 — AO‘;E CTyy = Oz Tz = F (11)

Oye = aag(pH/c) Agly, =cap(pH/c)? (12)
(7'3) 2 2

p=(e/m){r} a4 = W ag = {7} /{7)*. (13)

The angular brackets in (13) denote the energy averaging,
As components of effective tensor &, we choose

Tx o L0 TT YY . o TE gr __ L0 2z
o =o, — Aol ol = ol oy = 0n — Ac (14)

m m
o = onay(pH/fc) Aoy? = oyyay(uH /c)? Aoyt = aggay (uH /e)?.
(15)

The values oy, 043, 0y, and of depend on the degree of inhomogeneity and
must be calculated. For this purpose we insert (11)—-(15) into (5)—(7) and expand the
results in powers of H up to the quadratic averaged term. Every term of the series

must be equated to zero. We obtain the following system of equations:

(o3 = af’n)(A) + (20, + a)(o - U&)A?)
+ t(oy, — o33)/ Bl{(o ~ 03)°A%) + 3K B{(0 — 05, )*A%) = 0 (16)

033 = 013 {2({(0 — o )2 A%) /[15 BF(A%) - 3((0 — 5]} A%)} (17)
{(0—0y)A%) =0 (0 —on)A)=0 (18}
where

A=1/flc+ 20 + i3w(e/4m)] B = ol +iw(e,/4n) K =a3,/a;;.
(19

For further calculations we must choose the distribution function of the value o. We

study a semiconductor with random low-conductivity inclusions. We suppose that p

and 1 — p are the parts of the system volume with the conductivities &, and o,
respectively (o, /oy = X, < 1}

4. Frequency dependence of the magnetoresistance

We consider both low-frequency regions, where w < 4w|a??
regions, where 7= > w > 4xjciF| /¢,

[ €q, and high-frequency
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Let us examine the low-frequency region. In the limiting case we can take w = Q.
In this case we perform averaging in (16)-(18) and obtain

oy3/0l = (D), - KD,)/(D, + Ds) (20}
633/0::.’"=(011/00)3[(1—X°)2a0+(X1—X°)2a1]
x {[4(X0)? — 1+ 2XDJag + [4(X0)? — X7 +2X,X3]e,} " 1)

oo /om = (ag + a;.X1)/(eo + a1 ) Xy, (22)

ol /o0 = a+ (a®+ 3 X))V (23)
where

D, =p/(1+2X0)* + (1~ p)/(X, +2X3)? (24)

Dy =p(1— X2 /(1+2X0)°% + (1 = p)(X, - X3)%/ (X +2X7)° (25)

= [(1 — o35/, /15X [p(1 — X302 /(1 +2X)°

+ (1= p)(Xy = X0)? /(X +2X0)% (26)

a=p(X; +2X3)°  a=(1-p)1+2X0)" @7

= 3[3(3p - 1)(1 - Xy} + 3 X] (28)

Xn=on/o X3 =o0y/0. (29}

If p — 1, we have o,,/ad — 04, /0l — ol /cr0 — 1, o33/ —0. If p — 0, we
obtain &,,/0% — 05, /0% — 1, 055/08 — O ol fog— o, /o,

Let us consider the case of dielectric inclusions (¢, — 0). Then from (20)—(23)
for t > p > p_ (p. is the percolation threshold) one easily obtains

cufon=e1+ Koy  agfoy =(on/o)3(1-p)/(6p—1) (30)

oo /ol =2(3p-1)/(3p+1) ol Jo, = (3p~1)/2. (3

Here

py =4(6p-1}/(21p-1) @y = =T2p(6p— 1)(1 - p)/(3p+ 1)*(21p—1).
(32}

If p—p, we have a,, /08 ~ a4/ — 2(1 = K)/3, 0, /08 — ad fo, — 0.

In figure 1 the functions ol /oy, [(uH/c)ay] 'o¥*/al = o4/08,
Agit [AcE® = o53/0,, versus p obtained from (21)-(23) are shown. The bro-
ken curves here and below are derived for the case o) = 0.

In figures 2 and 3 the functions [(pH/c)%a, ] A6 /cl = o,,/cl and
[((uH/[e)?a,, ] ' AciE[ol = o45/0% versus p obtained from (20) and (21) for
different K-values are shown.

Now we consider the transverse and longitudinal magnetoresistances Apl™ =
p2® — pl using the expressions

APEEf ol = AofF [0S —(olF o) Apii[pl =Ack /el =1/c.
(33)
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Figure 1.  Dependences of ol /oy (curve 1),
o¥ fol, (curve 2) and AoZFfAgEF (curve 3)
on p for oy fog = 0.01. The broken curves here
and below comrespond fo the case when o; = 0.
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Figure 3.  Dependences of AcgZZ/ol and
ApzE /ol on p for oy/oa = 0.01 at various
K. curve 1, K = 1.0; curve 2, K = 0.8; curve
3, K=0.5; curve 4, K = 0.2,
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Figore 2. Dependences of Acf* /o2 on p for
o1 /o0 = 0.01 at various K: curve 1, K = 1.0;
curve 2, K = 0.8; curve 3, K = 0.5; curve 4,
K =0.2.
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Figure 4. Dependence of ApZZ/p% on p for
o3 foe = 0.01 at various K: curve 1, K = 1.0;
curve 2, i = 0.8; curve 3, K = 0.5; curve 4,
K =02

In our case the values AoZ® and ApS® are positive. Inserting (15) into (33) we

(34)

Apr [ pn = (0g/om)ay(nH [c).
In the case of dielectric inclusions using (30) and (31) we find that

ApET fop = [4(6p—1)/(21p - 1)|{1 - K[(3p—1)%(21p—1)
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+ 18p(1 — p)(6p—-1)]/(6p — 1)(3p + 1)*}a,(uH/c)? (35)
Apifpd =16(1—p)/(21p— )] {1 — K[18p(1 — p)/(3p+ 1)*]} a); (nH/c)?.
(36)

If K =1 (dispersion of 7 is absent), equations (35) and (36) become

m {on = [36p(1 - p)(3p — 1)/(21p - )(Bp + 1)](wH/c)* @7

ApEE [ oy = [6(1 ~ p)(3p ~ 1)(9p - 1)/(21p - 1)(3p + 1)’} (uH/c)*. (38)
In the limiting case ¢ = 1 — p < 1 we have

ApZEloh = Sa(uH]e)?  ApE/[e% = SeuH[  (9)

The last results coincide with the formulae in the paper by Pohoryles and Figielski
(1975).

In figure 4 the functions [(pH/e)%a,,] 1A p%" /pl versus p obtained from (34)
using (20) and (22) for different K -values are shown. As we can conclude from
(33) the functions [(pH /c)za“]“IAp 2 /p8 versus p coincide with the functions
(uH/e)a,, ) Aci [of versus p in figure 3.

We see from figures 1-4 that there are distinctions between the full and broken
curves in the vicinity of p, as in the case of the DC conductivity (Kirkpatrick 1973).

Let us study the correlation of transverse and longitudinal magnetoresistances.
For this purpose we use the equality ApfT = ApfZ?. Taking into account (35) and
(36) we find that

K = £(3p+ 1)%/[(3p - 1)(21p— 1) + 45p(1 - p)]. (40)

In figure 5 the dependence of K versus p at p, < p € 1 is shown.
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It is easy to see from (35) and (36) that in regions 1 and 2 the inequalities
Api? > ApZF and Api? < ApZ®, respectively, occur. In figure 6 the functions
[(pH/cYay] " ApEF fph, and [(pH/c)a, |7 Apif [py, versus p obtained from
(37) and (38) for K = 1 are shown. These curves coincide with the broken curves
1 in figures 3 and 4. For the values p > p, we have the ratio Apif/Api® =
(9p—-1)/6p < 1.

Next we consider the high-frequency region. In this region, only the first term in
equation (16) has a finite value. Consequently we have ¢,, = o, From (17) we
obtain o33 = 0. From (18) we find that o2 = (¢). Then we write

[1/(uH[c)an[(Dogt/og) = [1/(kH[c)ay](ok fog) =1

(41)
(1/(uH /) enj(Acf fog) =0
where
o /oy =p+(1-p)oyfog. (42)
For the magnetoresistance we find that
AP Ipl = (1 - K)a(uH[c)®  ApiF/el =0. (43)

Now the conditions for the low- and high-frequency regions can be rewritten as
w < oy = (47 /eg)oly w > wy, = (47 /eg)oly) (#)
where off and of" are the effective values of the low- and high-frequency con-
ductivities, respectively. In the frequency band w; < w < wy, the transition from
the low- to high-frequency regions occurs. The length of the intermediate-frequency
band depends on p. For example, if o; = 0, we have w, — w; = 2woy(1 — p}/e;,.
If p — 1, the intermediate-frequency band disappears naturally. If p — p, the
intermediate-frequency band length has the maximum value wy, —w; = 475,/ 3¢,

5. Discussion and conclusions

The theory of the AC magnetoresistance in random inhomogeneous solids using the
EMT is developed. We consider the case of weak magnetic fields. The frequency de-
pendences of the changes in conductivity due to H and the magnetoresistance in both
the transverse and the longitudinal directions to H are investigated. Calculations are
performed for semiconductors with random low-conductivity inclusions. We inves-
tigate the changes in conductivity and magnetoresistance in both the low-frequency
(w < wy) and high-frequency (7= > w > w,) limits. As can be easily seen, the
low- and high-frequency asympiotic values obtained change very weakly in the larpe
frequency limits, i.e. we have low- and high-frequency plateaux. In the frequency
band w; < w < wy, there is strong dispersion and the trapsition from the low- to
high-frequency plateau occurs.

The calculations show that in the low-frequency limit the curve of 0% /a8 versus
p (figure 1) has a minimum and the ratio AeZ’/Acl? < 1 has a maximum at the
percoiation threshold p.. The ratio AeZ*/AcZ* depends on p but does not depend
on K. AoZ! and AcZ® depend on both p and K (figures 2 and 3).
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The curves of ApZT[pl, versus p strongly depend on K (figure 4). As follows
from (33) the curves of Api¥/pP versus p coincide with the curves of Ao?? /ol
(figure 3). The ratio Ap?? /ApET depends on both p and K. In areas 1 and 2 in
figure 5 we have Apif > Apl* and Apl’ < ApfF, respectively. If K = 1 as
follows from figure 6 and (37) and (38) for 1 > p > p_, we have ApZ? > Apt®,

Let us discuss the frequency behaviour of the conductivity changes and magne-
toresistance. The finite values of AcZ®/al and ApZ®/pl in the low-frequency
limit go to finite values in the high-frequency limit with increasing w. If K = 1
we have that ApZ7 /pl # 0 in the low-frequency limit, and Ap=%/p% = 0 in the
high-frequency limit.

The finite values of Aci? /ol and Api? /o0 in the low-frequency limit decrease
to zero when we go from the low- to the high-frequency limit. In homogeneous
systems (p = 1 or p = 0) the values of AcZ® /o2 and ApZ*/p° do not depend on
the frequency, and the values of Ao?? /el and Ap2? [pl are equal to zero for all
frequencies.

The length of the transition band from the low- to the high-frequency region
depends on p. At the percolation threshold p_ the length has the maximum value.

In conclusion we discuss the conditions of experimental observation of our re-
sults. We must point out that curves in all figures are calculated under the condition
of fixed values of o, and ;. This condition can occur, for example, in prepared
two-component solid mixtures with various p. If we create a low-conductivity region
by irradiation or ion implantation in a semiconductor, the values o, o; and o, /o,
can be changed because of the creation of point defects in the system. However,
to obtain the experimental frequency dependences of magnetoresistance there are
no significant problems. Jaouen et al (1986) and Christofidés er a/ (1989) obtained
low- and high-frequency plateaux in the Hall mobility for silicon with ion implanta-
tion. We can expect to obtain similar frequency plateaux in the magnetoresistance in
inhomogeneous solids.
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